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Abstract
Scientific datasets are often difficult to analyse or visualize, due
to their large size and high dimensionality. We propose a two-
step approach to address this problem. We begin by using data
mining algorithms to identify areas of interest within the dataset.
This allows us to reduce a dataset’s size and dimensionality, and to
estimate missing values or correct erroneous entries. We display
the results of the data mining step using visualization techniques
based on perceptual cues. Our visualization tools are designed to
exploit the power of the low-level human visual system. The result
is a set of displays that allow users to perform rapid and accurate
exploratory data analysis.

In order to demonstrate our techniques, we visualized an en-
vironmental dataset being used to model salmon growth and mi-
gration patterns. Data mining was used to identify significant at-
tributes and to provide accurate estimates of plankton density. We
used colour and texture to visualize the significant attributes and
estimated plankton densities for each month for the years 1956 to
1964. Experiments run in our laboratory showed that the colours
and textures we chose support rapid and accurate element identi-
fication, boundary detection, region tracking, and estimation. The
result is a visualization tool that allows users to quickly locate spe-
cific plankton densities and the boundaries they form. Users can
compare plankton densities to other environmental conditions like
sea surface temperature and current strength. Finally, users can
track changes in any of the dataset’s attributes on a monthly or
yearly basis.
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Introduction

This paper describes our investigation of methods for visualizing
certain types of large, multidimensional datasets. These datasets
are becoming more and more common; examples include scien-
tific simulation results, geographic information systems, satellite
images, and biomedical scans. The overwhelming amount of in-
formation contained in these datasets makes them difficult to anal-
yse using traditional mathematical or statistical techniques. It also
makes them difficult to visualize in an efficient or useful manner.

The size of a dataset can be divided into three separate char-
acteristics: the number of elements in the dataset, the number of
attributes or dimensions embedded in each element, and the range
of values possible for each attribute. All three characteristics may
need to be considered during visualization.

Our approach to this problem combines an initial data filtering
step and a perceptual visualization step. Data mining algorithms

are used to identify dependencies, to estimate missing or correct
erroneous values, and to compress a dataset’s size and dimension-
ality. The results are displayed to the user in a manner that takes
advantage of the low-level human visual system. Offloading the
majority of the analysis task on the low-level visual system allows
users to very rapidly and accurately perform exploratory visualiza-
tion on large multidimensional datasets. Trends and relationships,
unexpected patterns or results, and other areas of interest can be
quickly identified within the dataset. These data subsets can then
be further visualized or analysed as required.

Oceanography Simulations

Our current visualization testbed for this work is a set of simula-
tions being run in the Westwater Research Centre at the University
of British Columbia. Researchers in oceanography are studying
the growth and movement patterns of different species of salmon
in the northern Pacific Ocean. Underlying environmental condi-
tions like plankton density, sea surface temperature (SST), cur-
rent direction, and current strength affect where the salmon live
and how they move and grow [19]. For example, salmon like
cooler water and tend to avoid ocean locations above a certain tem-
perature. Since the salmon feed on plankton blooms, they will
try to move to areas where plankton density is highest. Currents
will “push” the salmon as they swim. Finally, SST, current direc-
tion, and current strength affect the size and location of plankton
blooms as they form.

The oceanographers are designing models of how they believe
salmon feed and move in the open ocean. These simulated salmon
will be placed in a set of known environmental conditions, then
tracked to see if their behaviour mirrors that of the real fish. For
example, salmon that migrate back to the Fraser River to spawn
chose one of two routes. When the Gulf of Alaska is warm, salmon
make landfall at the north end of Vancouver Island and approach
the Fraser River primarily via a northern route through the John-
stone Strait (the upper arrow in Figure 1). When the Gulf of
Alaska is cold, salmon are distributed further south, make land-
fall on the west coast of VancouverIsland, and approach the Fraser
River primarily via a southern route through the Juan de Fuca
Strait (the lower arrow in Figure 1). The ability to predict salmon
distributions from prevailing environmental conditions would al-
low the commercial fishing fleet to estimate how many fish will
pass through the Johnstone and Juan de Fuca straits. It would
also allow more accurate predictions of the size of the salmon run,
helping to ensure that an adequate number of salmon arrive at the
spawning grounds.

In order to test their hypotheses, the oceanographers have cre-
ated a databaseof SSTs and ocean currents for the region 35� north
latitude, 180� west longitude to 62� north latitude, 120� west lon-
gitude (Figure 1). Measurements within this region are available
at 1��1

� grid spacings. This array of values exists for each month
for the years 1956 to 1964, and 1980 to 1989.

Plankton densities have also been collected and tabulated; these
are obtained by ships that take readings at various positions in the
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Figure 1: Map of the North Pacific; arrows represent possible
salmon migration paths as they pass through the either Johnstone
Strait (upper arrow) or the Strait of Juan de Fuca (lower arrow)

ocean. Unfortunately, these measurements are much more sparse
than the SST and current values. For the years 1956 to 1964, only
1,542 plankton densities are available. This leaves the oceanogra-
phers with a number of problems that need to be addressed before
their salmon growth and movement models can be tested.

1. A method of estimating plankton densities is required. Cur-
rently, spatial interpolation is used to provide the missing
values, but this does not work well for months where few (or
no) actual densities are available.

2. The oceanographers would like to know how plankton den-
sity is related to other environmental conditions like SST,
current direction, and current strength. A similar problem
will follow: the determination of how salmon growth and
open ocean migration patterns are related to underlying en-
vironmental conditions.

3. Finally, a method is needed for visualizing the dataset. This
method will be used to display both static (e.g., environ-
mental conditions for a particular month and year) and dy-
namic results (e.g., a real-time display of environmental con-
ditions as they change over time, possibly with the overlay
of salmon locations and movement).

Although the first two problems might be thought to lie out-
side the scope of visualization, we feel that management of the un-
derlying data is an inherent part of the visualization process, par-
ticularly for large and complex datasets. The need for data man-
agement has been addressed in numerous papers on visualization
[16, 20, 21]. Moreover, this problem was cited as an important
area of future research in NSF reports from both the database [15]
and visualization communities [14]. To this end, we have imple-
mented extended versions of four data mining algorithms that are
designed to address the types of problems present in the oceanog-
raphy datasets.

After using data mining to process the dataset, we must dis-
play it on-screen. We have approached the problems of dataset
size and dimensionality by trying to exploit the power of the low-
level human visual system. Research in computer vision and cog-
nitive psychology provides insight on how the visual system anal-
yses images. A careful mapping of data attributes to visual fea-
tures (e.g., colour, intensity, and texture) will allow users to per-
form rapid visual analysis on their data. We must also avoid visual
interference effects that can occur when different visual features
are combined at the same spatial location. We are currently con-
ducting experiments on the use of colour and texture for multidi-
mensional data visualization [4]. Results from these experiments
are used to visualize the oceanography datasets.

Data Mining

Data mining or knowledge discovery, as it is sometimes referred
to, is a relatively new area of database research. Data mining is
defined as “the nontrivial extraction of implicit, previously un-
known, and potentially useful information from data” [3]. This is
done by combining a variety of database, statistical, and machine
learning techniques. Different data mining algorithms have been
developed to perform different types of analysis. Some algorithms
search for repeating patterns or trends in a database. Others clas-
sify elements into groups based on their attribute values.

We are interested in data mining algorithms that perform classi-
fication. We believe that these algorithms can be used to improve
the efficiency of visualizing large, multidimensional datasets.
Their advantages are twofold. First, they can be used to reduce
the amount of data that needs to be displayed. Second, they can
be used to “discover” previously unknown and potentially useful
information. For example:

� datasets can be filtered by identifying the subset of ele-
ments that participate in a particular relationship, reducing
a dataset’s size,

� attributes that are significant to a given relationship can be
identified and displayed, reducing element dimensionality,

� data elements can be grouped or classified; only the classifi-
cation value (and possibly a confidence measure) can be dis-
played, reducing element dimensionality, and

� erroneous attribute values can be identified and missing val-
ues can be estimated, increasing a dataset’s accuracy.

To test our hypothesis, we implemented four existing tech-
niques, then tested them to see if they offered improved efficiency
or usefulness compared to visualization without any form of data
management. We chose two algorithms based on decision trees
[1, 11], one algorithm based on statistical tables [2], and one algo-
rithm based on rough sets [24].

All four data mining algorithms build their classification rules
from a user-supplied training set. The decision tree algorithms
begin by identifying significant attributes using chi-squared tests.
The attribute that provides the largest information gain is used to
partition the root of the tree. This process continues recursively
using any remaining attributes. Leaves in the tree hold a single
classification value. Unclassified elements match their attribute
values against each node in the tree (i.e, the attribute values define
a path from root to leaf through the tree). The leaf node’s classifi-
cation value is assigned to the element.

The statistical table algorithm uses probabilities to perform
classification. For each attribute, a table is built containing ev-
ery possible (attribute value, classification value) pair. Probabil-
ities are computed for each pair. A positive probability suggests
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that (based on the training set) the given attribute value implies the
given classification value; a negative probability means it implies
some other classification value. Given an unknown element, the
tables are used to compute probabilities for every possible classi-
fication value. The classification with the highest positive proba-
bility is assigned to the element.

The rough set algorithm uses set theory and equivalence rela-
tions to identify a subset of attributes that group classification val-
ues in a manner equivalent to the original attributes in the train-
ing set. Each attribute in the subset is assigned a coverage value;
higher values imply greater importance during classification. The
algorithm can then build rules that map combinations of attribute
values to a classification value. Unclassified elements match their
attribute values to each rule. The rule with the highest total cov-
erage is used to assign a classification value to the element.

The data mining algorithms are designed to process a training
set, then provide classification values for one or more unclassified
elements. During visualization, however, users often require more
than a simple classification value. We modified and extended the
algorithms to provide additional results, in particular, classifica-
tion confidence weights, the ability to compare different classifi-
cations, and the ability to identify attributes that are significant to a
specific classification. This allows a user to answer questions like:

� How confident is the algorithm about the classification value
it suggests? A confidence weight is returned with each clas-
sification value to help answer this question.

� How “good” is the classification value suggested by the data
mining algorithm, compared to other potential classification
values? Comparing confidenceweights shows how the algo-
rithm ranks different classifications.

� Which attributes are significant to the classification and
which are not? A significance weight is assigned to each at-
tribute when the classification rules are built; attributes that
are ignored during classification have a significance weight
of zero.

Results from experiments that tested the extended data mining
algorithms were positive. We showed that data mining produced
more accurate results than bilinear interpolation on a large envi-
ronmental dataset. Significance weights identified the most im-
portant attributes used during classification. Confidence weights
were excellent predictors of classification values that were in er-
ror. Data elements with low confidence weights were also used to
identify “holes” in the training set. Low confidence weights indi-
cate elements the algorithm did not see during training (and hence
is unsure how to classify); once identified, representative elements
can be added to the training set, thereby improving the classifica-
tion power of the algorithm. Finally, we tested each algorithm to
see how it performed when errors were introduced into the train-
ing set. All of the algorithms continued to perform well with some
level of training set error, however, the decision tree algorithms
were able to handle significantly more errors while still returning
the fewest mistakes as a result. Complete descriptions of the four
data mining algorithms, the extensions we developed, and our ex-
perimental results are available in [5].

Oceanography Results

Our initial concern for the oceanographydatasets was accurate es-
timation of plankton densities. We created a training set that con-
tained all available density measurements (a total of 1,542 ele-
ments) for the years 1956 to 1964. Each of these readings included
a latitude, longitude, and the month and year the reading was
taken. We added to each element the corresponding SST, current

direction, and current strength (these were taken directly from the
environment database for the given month, year, latitude, and lon-
gitude). Continuous values (SST, current direction and strength,
and plankton density) were divided into five equal-width ranges;
each value’s range was used during classification. Although the
data mining algorithms will automatically range continuous data,
we found that more accurate results are obtained when a user fa-
miliar with the dataset chooses the bounds for each range. The
ranges used for SST, current U and V direction, current strength,
and plankton density are shown in Table 1.

(a)

(b)

(c)

Figure 2: Known and estimated plankton densities for August
1956, greyscale used to represent density (dark grey for low to
white for high): (a) known densities; (b) missing densities es-
timated using interpolation (note the banding that occurs at the
boundaries of the array); (c) missing densities estimated using
data mining (patterns within the array correspond to the prevail-
ing SSTs and current strengths)

We started by reading the training set with each of our four
data mining algorithms, then using significance weights to iden-
tify which attributes were being used to classify (i.e., estimate)
plankton density. All four algorithms reported similar results:
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SST (C) SST < 6:34 6:34 � SST < 8:98 8:98 � SST < 11:82 11:82 � SST < 14:80 SST � 14:80

Current U U < �0:6 �0:6 � U < �0:2 �0:2 � U < 0:2 0:2 � U < 0:6 U� 0:6

Current V V < �0:6 �0:6 � V < �0:2 �0:2 � V < 0:2 0:2 � V < 0:6 V� 0:6

Strength (cm/s) Str < 6:087 6:087 � Str < 9:015 9:015 � Str < 11:567 11:567 � Str < 14:542 Str � 14:542

Plankton (g/m3) Plk < 10 10 � Plk < 28 28 � Plk < 53 53 � Plk < 114 Plk � 114

Table 1: Boundaries used to divide SST (measured in degrees Celsius), normalized current U and V direction, current strength (measured
in centimetres per second), and plankton density (measured in grams per metre cubed) into five equal-width ranges.

month was the most important attribute to use during classifica-
tion, followed by current strength and SST. Other attributes (cur-
rent direction and year) had a significance weight of zero. The
oceanographers concurred with these results; plankton densities
display a seasonal variability, large current upwellings will pro-
duce larger plankton blooms, and higher ocean temperatures cause
faster plankton production and higher overall densities. These
results allowed us to restrict our visualizations to month, SST,
strength, and plankton density. The oceanographers searched
these displays for temperature and current patterns, and their re-
lationship to the corresponding plankton densities.

Once rules are built from the training set, each data mining
algorithm can assign an estimated plankton density to unknown
ocean positions based on SST, current strength, and month. This
was done for all missing plankton densities for the years 1956 to
1964. We used the interval classification algorithm [1], since it
showed the smallest sensitivity to errors in its training set during
prior testing [5]. Approximately 11% of the estimated plankton
densities exhibited low confidence weights. Although these ele-
ments are included during visualization, we plan to examine them
in isolation, to try to determine why the data mining algorithm had
difficulty assigning them a density value. Initial investigation sug-
gests that elements with certain combinations of month, SST, and
current strength were not present in our training set. As a result,
the data mining algorithms were uncertain about how to analyse
these kinds of elements during classification.

An example of our results is shown in Figure 2. The plankton
densities that were actually available are shown in Figure 2a. Fig-
ure 2b shows missing values that have been estimated using spa-
tial interpolation. As expected, this technique performs poorly for
locations in the ocean where no initial values are present. Most
of the northwest and southwest quadrants have been classified to
have moderate density; there is almost certainly more variation in
this region. Data mining, on the other hand, uses the month, along
with the underlying SSTs and current strengths, to estimate plank-
ton density. In Figure 2c, the northwest and southwest quadrants
have variability similar to that which exists across the known den-
sities (Figure 2a). Although it is impossible to conclude that the
values provided by the data mining algorithm are “more correct”
than the interpolated values, our algorithms are not at a disadvan-
tage when no real data values neighbour the value we want to es-
timate.

Perceptual Visualization

Researchers in computer vision and cognitive psychology are
studying how the low-level visual system analyses images. One
very interesting result has been the discovery of a limited set of
visual features that are processed preattentively, without the need
for focused attention. These features can be used to perform cer-
tain visual tasks very rapidly and accurately. Examples include
searching for elements with a unique visual feature, identifying
the boundaries between groups of elements with common fea-

tures, tracking groups of elements as they move in time and space,
and estimating the number of elements with a specific feature.
These tasks are preattentive because they can be performed on
large multi-element displays in less than 200 msec. Moreover, the
time required to complete the tasks is independent of the number
of data elements being displayed. Eye movements take at least
200 msec to initiate, and random locations of the elements in the
display ensure that attention cannot be prefocused on any particu-
lar location, yet subjects report that these tasks can be completed
with very little effort. This suggests that certain information in the
display is processed in parallel by the low-level visual system.

Our interest is focused on identifying relevant results in the vi-
sion and psychology literature, then extending these results and
integrating them into a visualization environment. We are cur-
rently studying perceptual aspects of colour, orientation, and tex-
ture. Results from our experiments allow us to build visualization
tools that use these visual features to effectively represent multidi-
mensional datasets. Because our tools take advantage of the low-
level visual system, they offer a number of important advantages:

� Visual analysis is rapid and accurate, since preattentive tasks
need an exposure duration of 200 msec or less. We have
shown that tasks performed on static frames extended to a
dynamic environment, where frames are shown one after an-
other in a movie-like fashion [6] (i.e., tasks that can be per-
formed on a single frame in 200 msec can also be performed
on a sequence of frames shown at five frames per second).

� Our tasks are insensitive to display size (to the limits of the
display device); increasing the number of elements in the
display results in little or no increase in the amount of time
required to visually analyse the display. Again, this is a di-
rect result of the fact that preattentive tasks are independent
of display size.

� Certain combinations of visual features cause interference
patterns in the low-level visual system that can mask infor-
mation in a display. Our experiments were designed to iden-
tify these situations. This means our visualization tools can
be built to avoid data-feature mappings that might interfere
with the analysis task.

We chose to use two well-known features to visualize the
oceanography datasets: colour and texture. Research in our lab-
oratory has studied the use of both features during visualization.
For colour, we conducted a number of experiments to determine
how to choose colours that are equally distinguishable from one
another. That is, we want to pick n colours which, when displayed
simultaneously, allow the user to identify the presence or absence
of any one of the colours. Our results showed that three criteria
must be considered during colour selection [4]:

� colour distance: the distance from each colour to its nearest
neighbour(s) is equal and above a minimum threshold; dis-
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tance is measured in a perceptually balanced colour model
(in our case, CIE LUV),

� linear separation: each colour must be linearly separable
from all the other colours, again by a minimum threshold
measured in a perceptually balanced colour model, and

� colour category: each colour must occupy a uniquely named
colour region.

We found that when these rules are satisfied, up to seven iso-
luminant colours can be displayed simultaneously. A user can
quickly determine whether any one of the seven colours is present
or absent in a given display. Work in progress is studying how to
integrate intensity and fully saturated colours into our model. This
will allow users a wider range of colours to choose from, and may
also increase the maximum number of colours that can be simul-
taneously displayed and identified.

Experiments are also being run to study the use of perceptual
texture elements (or pexels) for multidimensional data visualiza-
tion. Texture has been studied extensively in the computer vision
and psychology communities [7, 12, 13, 18]. A number of visu-
alization systems that use texture have been described, including
EXVIS [10], the use of Wold features [9], the use of Markov ran-
dom fields [8], and studies of the fundamentaldimensions of a tex-
ture element [23].

We are interested in using pexels to visualize multidimensional
datasets. As opposed to “texture maps” (patterns that are mapped
onto regions of a graphical object), perceptual textures are arrays
of elements with visual and spatial characteristics that are con-
trolled by the underlying data being displayed. Research results
suggest certain perceptual “dimensions” can be varied to control
the appearanceof the texture formed by the elements, for example:

� density: how closely elements are packed together,

� height: how tall or short an element is,

� orientation: how an element “sits up” or “lies down” or
“spins” on the surface it’s connected to, and

� randomness: whether elements are spatially arranged as a
regular grid, or with a random distribution.

Our experiments are testing the use of height, density, and ran-
domness to display multidimensional data. Our pexels look like
paper strips; at each data position, a pexel is displayed. The
user maps attributes in the dataset to the density (which controls
the number of strips in each pexel), height, and randomness of
each pexel. Examples of each of these perceptual dimensions are
shown in Figure 3. We are also testing for visual interference, fea-
ture preference, and target region size (i.e., how many pexels does
a region need to contain before it can be rapidly identified).

Figure 4a shows an environmental dataset visualized with tex-
ture and greyscale (we used greyscale for printing purposes only;
colour is used to display on-screen images). Locations on the map
that contain pexels represent areas in North America with high lev-
els of cultivation. Height shows the level of cultivation (75-99%
for short pexels, 100% for tall pexels), density shows the ground
type (sparse for alluvial, dense for wetlands), and greyscale shows
the vegetation type (dark grey for plains, light grey for forest, and
white for woods). Users can easily identify lower levels of culti-
vation in the central and eastern plains. Areas containing wetlands
can be seen as dense pexels in Florida, along the eastern coast, and
in the southern parts of the Canadian prairies. Figure 4b shows a
map of central Japan and the Korean peninsula. As in Figure 4a,
height is mapped to cultivation level and greyscale is mapped to

Low Medium Tall

Sparse Dense Very Dense

Regular Irregular Random

Figure 3: Variation of perceptual texture dimensions height (top
row), density (middle row), and randomness (bottom row) across
three discrete values

vegetation type. In this image, however, randomness is mapped
to ground type: regular for alluvial, and irregular for wetlands.
Wetlands (i.e., pexels with random placement) can be seen in the
northwestern regions of the peninsula.

Although the experiments are still being run, preliminary re-
sults show that perceptual textures can be used to display multidi-
mensional data. We have also compiled initial information on fea-
ture preference, feature interference, and the region size required
for rapid identification. Theseresults were used when we designed
tools to visualize the oceanography datasets.

Oceanography Visualization

We chose to visualize SST and current strength with plankton den-
sity, since these attributes (along with month) were significantdur-
ing data mining. Displaying the three attributes together allows
the oceanographers to search for relationships between plank-
ton density, current strength, and SST. Plankton is displayed us-
ing colour; SST and current strength are displayed using texture.
Colours for the five plankton ranges were chosen using our colour
selection technique [4]. Although other colour scales were avail-
able (for example, by Ware [22]), our colours are specifically de-
signed to highlight outliers, and to show clearly the boundaries be-
tween groups of elements with a common plankton density. We
display the five plankton density ranges from low to high using
blue (monitor RGB=36, 103, 151), green (monitor RGB=18, 127,
45), brown (monitor RGB=134, 96, 1), red (monitor RGB=243,
51, 55), and purple (monitor RGB=206, 45, 162),

For the underlying texture, we mapped current strength to
height and SST to density. Our choices were guided by results we
observed from tests run during the design of our texture experi-
ments, specifically:

� differences in height may be easier to detect, compared to
differences in density or randomness,

� variation in height may mask differences in density or ran-
domness; this appears to be due to the occlusion that occurs
when tall pexels in the foreground hide short pexels in the
background; this will be less important when users can con-
trol their viewpoint into the dataset (our visualization tool al-
lows the user to interactively manipulate the viewpoint), and

181



Proceedings Graphics Interface ’98, Vancouver, Canada

(a)

(b)

Figure 4: Using pexels to display environmental conditions; (a) a
map of North America, pexels represent areas of high cultivation,
height mapped to level of cultivation, density mapped to ground
type, greyscale mapped to vegetation type; (b) a map of Japan and
the Korean peninsula, height and greyscale mapped to cultivation
and vegetation, randomness mapped to ground type

� tightly spaced grids can support up to three easily distin-
guishable density patterns; placing more strips in a single
pexel (e.g., arrays of three by three or four by four strips)
will either cause the strips to overlap with their neighbours,
or make each strip too thin to easily identify.

Because there may be a feature preference for height over den-
sity, and because current strength was deemed “more important”
than SST during data mining, we used height to represent currents
and density to represent SSTs. The five ranges of current strength
are mapped to five different heights. We do not use a linear map-
ping, rather the lower two ranges (corresponding to the weakest
currents) are displayed using two types of short pexels, and the
upper three ranges (corresponding to the strongest currents) are
displayed using three types of tall pexels. This allows a user to
rapidly locate boundariesbetween weak and strong currents, while
still being able to identify each of the five ranges. For SSTs, the
lower three ranges (corresponding to the coldest SSTs) are dis-
played with a pexel containing a single strip, while the upper two
ranges (corresponding to the warmest SSTs) are displayed with
pexels containing arrays of two and four strips, respectively. The
densities we chose allow a user to see clearly the boundaries be-
tween cold and warm temperature regions. If necessary, users can
change the range boundaries to focus on different SST gradients.

The oceanographers want to traverse their datasets in monthly
and yearly steps. Experiments run in our laboratory have shown
that preattentive tasks performed on static frames can be extended
to a dynamic environment, where displays are shown one after
another in a movie-like fashion [6]. Our visualization tool was
designed to allow users to scan rapidly forwards and backwards
through the dataset. This makes it easy to compare changes in

the value and location of any of the environmental variables be-
ing displayed. The oceanographers can track seasonal changes in
current strength, SST, and plankton density as they move month
by month through a particular year. They can also see how inter-
annual variability affects the environmental conditions and corre-
sponding plankton densities for a particular month across a range
of years.

Figure 5 shows three frames from the oceanography dataset:
February 1956, June 1956, and October 1956. Colour shows the
seasonal variation in plankton densities. Height and density allow
the oceanographers to track current strengths and SSTs. In Febru-
ary (Figure 5a), most plankton densities are less than 28 g/m3 (i.e.,
blue and green strips). Currents are low in the north-central Pa-
cific; a region of weak currents also sits off the south coast of
Alaska. Most of the ocean is cold (sparse pexels), although a
region of higher temperatures can easily be seen as dense pex-
els in the south. In June (Figure 5b) dense plankton blooms (red
and purple strips) are present across most of the northern Pacific.
The positions of the strong currents have shifted (viewing the en-
tire dataset shows this current pattern is relatively stable for the
months March to August). Warmer SSTs have pushed north, al-
though the ocean around Alaska and northern British Columbia is
still relatively cold. By October the plankton densities have started
to decrease (green, brown, and red strips); few high or low den-
sity patches are visible. Current strengths have also decreased in
the eastern regions. Overall a much larger percentage of the ocean
is warm (i.e., dense pexels). This is common, since summer tem-
peratures will sometimes last in parts of the ocean until October or
November.

Conclusions

This paper described our two-step approach to visualizing com-
plex scientific datasets. We begin by using data mining algo-
rithms to identify significant trends, classify elements, and focus
the dataset. The results are then visualized using perceptual fea-
tures. We demonstrated our techniques by analysing and visual-
izing an environmental dataset being used to run salmon growth
and migration simulations. We used data mining to estimate miss-
ing plankton densities, and to identify the attributes significant to
this estimation. The resulting sea surface temperatures, ocean cur-
rent strengths, and plankton densities were visualized using colour
and texture. The colours and textures (built as arrays of paper
strips with varying height and density) were chosen based on re-
sults from perceptual experiments run in our laboratory. We ex-
ploit the low-level human visual system with our visualization
tools. This makes a large part of the visual analysis automatic; lit-
tle effort or focused attention is required by the user to perform
exploratory tasks like target identification, boundary detection, re-
gion tracking, and estimation. These tasks can be carried out on
sequences of displays shown one after another at relatively high
frame rates (e.g., 100 to 200 msec per frame). This technique al-
lows the oceanographers to scan through their datasets month by
month or year by year to view seasonal or interannual changes in
environmental conditions.

Experiments studying the use of height, density, and random-
ness to generate perceptual textures are still in progress. Once
completed, we believe the results will allow us to increase the flex-
ibility and effectiveness of our visualization tools. The oceanog-
raphers will begin testing salmon growth and migration models in
the near future. We plan to use data mining to try to relate envi-
ronment conditions to the simulated salmon, and to visualize the
salmon as they move through the open ocean.

Although our practical example in this paper was an oceano-
graphic dataset, data mining and perceptual visualization can be
applied to a wide range of visualization environments. We have
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used perceptual colour selection to highlight regions of interest
in reconstructed medical volumes [17]. We have also used data
mining to estimate sea surface temperatures in an environmental
dataset from NASA [5]; we showed that our results were more ac-
curate than estimates produced by bilinear interpolation. We will
continue to test the flexibility of our techniques with new visual-
ization problems and datasets.
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(a)

(b)

(c)

Figure 5: Visualization of the oceanography datasets, colour used to represent plankton density (blue, green, brown, red, and purple
represent lowest to highest densities), height used to represent current strength, texture density used to represent SST: (a) February,
1956; (b) June, 1956; (c) October, 1956
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